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Abstract

Analytical solutions of the equations of motion and energy of a second grade fluid for the developed flow over a stretching sheet with
slip condition are presented. The electrically conducting fluid occupies the semi-infinite porous space. The non-linear partial differential
equations and boundary conditions are reduced to a system of non-linear ordinary differential equations and boundary conditions by
similarity transformations. Homotopy analysis method (HAM) is implemented to solve the reduced system. Graphs are plotted for var-
ious values of the emerging dimensionless parameters of the problem and discussed.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The studies of boundary layer flows of viscous and non-
Newtonian fluids over a stretching surface have received
much attention because of their extensive applications in
the field of metallurgy and chemical engineering, for exam-
ple, in the extrusion of polymer sheet from a dye or in the
drawing of plastic films. Such investigations of magnetohy-
drodynamic (MHD) flows are very important industrially
and have applications in different areas of research such
as petroleum production and metallurgical processes. For-
tunately, stretching flow problem is one of those rare prob-
lems in fluid dynamics for which an exact analytical
solution has been found in the literature. This type of flow
has been considered first time by Sakiadis [1]. Even more
interesting is the fact that the problem still admits an ana-
lytical solution when several other aspects are taken into
account, separately or jointly, such as suction at the sheet
[2,3], presence of transverse magnetic field [4,5] viscoelastic-
ity of the fluid [6–14] partial slip at the boundary [15] and
mass and heat transfer [16–19].
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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The no-slip boundary condition is known as the central
tenets of the Navier–Stokes theory. But there are situations
wherein such condition is not appropriate. Especially, no-
slip condition is inadequate for most non-Newtonian flu-
ids. For example, polymer melts often exhibit macroscopic
wall slip and that in general is governed by a non-linear
and monotone relation between the slip velocity and trac-
tion. The fluids exhibiting boundary slip find applications
in technology such as in the polishing of artificial heart
valves and internal cavities. Navier [20] suggested a slip
boundary condition in terms of linear shear stress. The
study of heat transfer in porous space has applications in
numerous areas such as thermal and insulating engineer-
ing, modelling of packed sphere beds, solar power collec-
tor, cooling of electronic system, ventilation of rooms,
chemical catalytic reactors, grain storage devices, petro-
leum reservoirs and ground hydrology.

Therefore the present work has been undertaken in
order to analyze the flow and heat transfer characteristics
due to a stretching sheet with slip effects. An electrically
conducting second grade fluid fills the porous space. The
outline of the paper is as follows.

In the next section we present the problem formulation.
Section 3 gives the analytic solutions for the outcoming
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problem of the velocity and temperature fields. Homotopy
analysis method (HAM) has been used in obtaining the
analytic solutions. HAM is a recent newly developed
method that has been already implemented for several
problems [21–40]. In Section 4 we discuss the convergence
of the solutions. Section 5 consists of graphical results and
discussion. Then in Section 6 we provide concluding
remarks.
2. Mathematical formulation

We consider a steady two-dimensional flow of an incom-
pressible second grade fluid saturated in a porous space
past a stretching sheet at y ¼ 0. The fluid fills the porous
space above the sheet y > 0. The flow is caused because
of the application of two equal and opposite forces along
the stretching sheet with a linear velocity cx, c > 0, there-
fore the origin is kept fixed. The fluid adheres to the sheet
partially and thus motion of the fluid exhibits the slip con-
dition. A uniform transverse magnetic field of strength B0 is
applied. The induced magnetic field is neglected under the
assumption of small magnetic Reynolds’ number. Further-
more, heat transfer analysis is taken into account by assign-
ing Tw and T1, the sheet temperature and the temperature
of the ambient fluid, respectively. Following [13,15,41], the
governing boundary layer equations in Cartesian coordi-
nate system are
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where u and v are velocity components in x and y direc-
tions, respectively, m is the kinematic viscosity, q is the fluid
density, / and k are porosity and permeability of the por-
ous space, respectively, r is the electrical conductivity of
fluid, cp is the specific heat, T is the temperature, k1 is ther-
mal conductivity and a1 ðP 0Þ is the material parameter of
second grade fluid.

For viscous fluid, the slip flow condition has been
employed by Navier and then used in studies of fluid flow
in rough and coated surfaces [42], and gas and liquid flow
in microdevices [43]. Recently Andersson [44] and Ariel
et al. [45] analyzed the slip effects on the flows of viscous
fluid and elastico-viscous fluid, respectively. The slip flow
conditions in these investigations have been defined in
terms of the shear stress. Therefore, employing the similar
procedure, the slip flow conditions for the problem under
consideration are
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and the relevant conditions of temperature are

T ðx; 0Þ ¼ T w; T ðx;1Þ ¼ T1; ð5Þ

in which b1 is the slip parameter and c is the stretching con-
stant. Note that the thermal slip effects are not considered
here. Introducing the non-dimensional parameters and
variables as follows:
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where b is the non-dimensional slip parameter, M is Hart-
man number, k is the non-dimensional porosity parameter,
a is the second grade parameter, Pr is the Prandtl number
and Ec is the Eckert number. The incompressibility condi-
tion (1) is satisfied automatically and Eqs. (2) and (3)
become
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ð7Þ
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Boundary conditions (4) and (5) are transformed into
[44,45]

f ð0Þ ¼ 0; f 0ð1Þ ¼ 0;

f 0ð0Þ � bf 00ð1þ 3af 0Þjg¼0 ¼ 1; ð9Þ
hð0Þ ¼ 1; hð1Þ ¼ 0: ð10Þ

The non-linear system of Eqs. (7)–(10) is solved analytically
by using HAM.
3. Solutions for velocity and temperature using HAM

It is straightforward to select
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h0ðgÞ ¼ expð�gÞ ð12Þ

as the initial approximations of f ðgÞ and hðgÞ. Besides that
we choose
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as the auxiliary linear operators having the following
properties:

L1½C1 þ C2eg þ C3e�g� ¼ 0; ð16Þ
L3½C4eg þ C5e�g� ¼ 0 ð17Þ
in which Ci, ði ¼ 1–5Þ are arbitrary constants. If p (2[0, 1])
and �hi ði ¼ 1–3Þ indicate the embedding and non-zero aux-
iliary parameters, respectively, then the zeroth-order defor-
mation problems are
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The problems at the mth-order can be written as
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¼ �h1R2mðgÞ at g ¼ 0; ð23Þ
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Using the symbolic software Mathematica, we solve Eqs.
(22)–(25) up to first few order of approximations. The
Eqs. (22)–(25) give us the following type of solutions:
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In above solutions, the recurrence formulas for the coeffi-
cients ak
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m;n of fmðgÞ and hmðgÞ are obtained when
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4. Convergence of the HAM solutions

The explicit analytic solutions given in Eqs. 30 and 31
have the auxiliary parameters �hi ði ¼ 1� 3Þ. The conver-
gence region and rate of approximation for the HAM solu-
tion is determined through auxiliary parameters. Due to
this fact, the �h-curves for f and h are plotted for 25th order
of approximation by taking three different values of a, b, M

and k (Fig. 1). Fig. 1a shows that the range for the admis-
sible values of �h1 for k ¼ 0:1; a ¼ 0:1, b ¼ 0:1 and M ¼ 0:1
is �1:1 6 �h1 6 �0:2. Upto these values of the parameters
a, b, M and k, the auxiliary parameters �h1 ¼ �h ¼ �0:8 give
us convergent solution. However for k ¼ 0:1, a ¼ 0:5,
b ¼ 0:5 and M ¼ 0:1, the range for the admissible values
of �h1 is �0:7 6 �h1 6 �0:2. For these values of the parame-
ters, the auxiliary parameters �h1 ¼ �h ¼ �0:5 give us con-
vergent solution. Similarly for k ¼ 1:0; a ¼ 1:0; b ¼ 10
and M ¼ 1:0; Fig. 1b indicates that the range for the admis-
sible values of auxiliary parameters is �h3 ¼ �0:5 for
a ¼ 0:1, Pr ¼ 0:1 and Ec ¼ 0:1. Similarly, we can choose
the value of the auxiliary parameters �h3 for different values
of parameters a, Pr and Ec. It is determined through our
calculations that series given in Eqs. (30) and (31) converge
in the whole region of g for different values of the physical
parameters of the problem by choosing the suitable values
of the auxiliary parameters �h1 ¼ �h2 ¼ �h3 ¼ �h.
Fig. 3. Influence of b on f 0 at �h ¼ �0:8.

5. Results and discussion

The purpose of this section is to see the influence of
some interesting parameters on the velocity and tempera-
ture fields. In particular, attention has been focused to
the second grade parameter a, the slip parameter b, poros-
ity parameter k and Hartman number M on the velocity.
The effect of Prandtl number Pr and Eckert number Ec is
also investigated on the temperature fields.

Figs. 2–5 show the effects of second grade parameter a,
slip parameter b, porosity parameter k and the Hartman
number M on the velocity field f 0. It is apparent from
Fig. 2 that f 0 is an increasing function of a. It is to be noted
from Fig. 3 that the velocity field f 0 increases as b increases.
It is further observed that the effects of a and b on the
velocity field is almost same in a qualitative sense. The
effects of porosity parameter k and Hartman number M

on f 0 are sketched in Figs. 4 and 5. These two Figs. indicate
that by increasing k and M ; the velocity field increases. It is
worth mentioning to see that the effect of the parameter a
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on the temperature field h is opposite to that of f 0 (Fig. 6).
Fig. 7 depicts the effect of Hartman number M on the tem-
perature field. It is found that behavior of M on h is similar
to that of f 0. Figs. 8 and 9 show the variation in tempera-
ture field due to Prandtl and Eckert numbers respectively.
It is observed that the effects of these two parameters are
quite opposite. However, huge variation in the Eckert
number causes little change in the velocity.

6. Concluding remarks

MHD steady flow of second grade fluid with heat trans-
fer analysis is investigated. The flow in a porous space is
due to a stretching sheet which also exhibits slip condition.
The non-linear boundary condition arising through the use
of slip condition is taken into account. Recurrence formu-
las in the series solutions for velocity and temperature are
presented. The effects of various flow controlling parame-
ters on the dimensionless velocity and temperature are ana-
lyzed. The graphical representations of these effects feature
promptly. It is found that the horizontal component of
velocity increases as the slip parameter increases.
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